Author:
Bilal Muhammad,Saeed Anwar,Gul Taza,Kumam Wiyada,Mukhtar Safyan,Kumam Poom
Abstract
AbstractThe energy transmission through micropolar fluid have a broad range implementation in the field of electronics, textiles, spacecraft, power generation and nuclear power plants. Thermal radiation's influence on an incompressible thermo-convective flow of micropolar fluid across a permeable extensible sheet with energy and mass transition is reported in the present study. The governing equations consist of Navier–Stokes equation, micro rotation, temperature and concentration equations have been modeled in the form of the system of Partial Differential Equations. The system of basic equations is reduced into a nonlinear system of coupled ODE's by using a similarity framework. The numerical solution of the problem has been obtained via PCM (Parametric Continuation Method). The findings are compared to a MATLAB built-in package called bvp4c to ensure that the scheme is valid. It has been perceived that both the results are in best agreement with each other. The effects of associated parameters on the dimensionless velocity, micro-rotation, energy and mass profiles are discussed and depicted graphically. It has been detected that the permeability parameter gives rise in micro-rotation profile.
Publisher
Springer Science and Business Media LLC
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献