Model-predicted geometry variations to compensate material variability in the design of classical guitars

Author:

Brauchler Alexander,Gonzalez Sebastian,Vierneisel Manuel,Ziegler Pascal,Antonacci Fabio,Sarti Augusto,Eberhard Peter

Abstract

AbstractMusical instrument making is often considered a mysterious form of art, its secrets still escaping scientific quantification. There is not yet a formula to make a good instrument, so historical examples are regarded as the pinnacle of the craft. This is the case of Stradivari’s violins or Torres guitars that serve as both models and examples to follow. Geometric copies of these instruments are still the preferred way of building new ones, yet reliably making acoustic copies of them remains elusive. One reason for this is that the variability of the wood used for instruments makes for a significant source of uncertainty—no two pieces of wood are the same. In this article, using state-of-the-art methodologies, we show a method for matching the vibrational response of two guitar top plates made with slightly different materials. To validate our method, we build two guitar soundboards: one serving as a reference and the second acting as a copy to which we apply model-predicted geometry variations. The results are twofold. Firstly, we can experimentally validate the predictive capabilities of our numerical model regarding geometry changes. Secondly, we can significantly reduce the deviation between the two plates by these precisely predicted geometry variations. Although applied to guitars here, the methodology can be extended to other instruments, e.g. violins, in a similar fashion. The implications of such a methodology for the craft could be far-reaching by turning instrument-making more into a science than artistic craftsmanship and paving the way to accurately copy historical instruments of a high value.

Funder

Deutsche Forschungsgemeinschaft

Politecnico di Milano,Italy

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3