Low-frequency noise induced by cation exchange fluctuation on the wall of silicon nitride nanopore

Author:

Matsui Kazuma,Goto Yusuke,Yanagi Itaru,Akahori Rena,Fujioka Michiru,Ishida Takeshi,Yokoi Takahide,Nakagawa Tatsuo,Takeda Ken-ichi

Abstract

AbstractNanopore-based biosensors have attracted attention as highly sensitive microscopes for detecting single molecules in aqueous solutions. However, the ionic current noise through a nanopore degrades the measurement accuracy. In this study, the magnitude of the low-frequency noise in the ionic current through a silicon nitride nanopore was found to change depending on the metal ion species in the aqueous solution. The order of the low-frequency noise magnitudes of the alkali metal ionic current was consistent with the order of the adsorption affinities of the metal ions for the silanol surface of the nanopore (Li <Na <K < Rb <Cs). For the more adsorptive alkaline earth metal ions (Mg and Ca), the low-frequency noise magnitudes were as low as those for Li ions. This tendency, i.e., metal ions having a very high or low adsorption affinity causing a reduction in low-frequency noise, suggests that the low-frequency noise was induced by the exchange reactions between protons and metal ions occurring on the silanol surface. In addition, the low-frequency noise in the ionic current remained low even after replacing the CaCl2 aqueous solution with a CsCl aqueous solution, indicating that Ca ions continued being adsorbed onto silanol groups even after removing the aqueous solution.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3