Author:
Matsui Kazuma,Goto Yusuke,Yanagi Itaru,Akahori Rena,Fujioka Michiru,Ishida Takeshi,Yokoi Takahide,Nakagawa Tatsuo,Takeda Ken-ichi
Abstract
AbstractNanopore-based biosensors have attracted attention as highly sensitive microscopes for detecting single molecules in aqueous solutions. However, the ionic current noise through a nanopore degrades the measurement accuracy. In this study, the magnitude of the low-frequency noise in the ionic current through a silicon nitride nanopore was found to change depending on the metal ion species in the aqueous solution. The order of the low-frequency noise magnitudes of the alkali metal ionic current was consistent with the order of the adsorption affinities of the metal ions for the silanol surface of the nanopore (Li <Na <K < Rb <Cs). For the more adsorptive alkaline earth metal ions (Mg and Ca), the low-frequency noise magnitudes were as low as those for Li ions. This tendency, i.e., metal ions having a very high or low adsorption affinity causing a reduction in low-frequency noise, suggests that the low-frequency noise was induced by the exchange reactions between protons and metal ions occurring on the silanol surface. In addition, the low-frequency noise in the ionic current remained low even after replacing the CaCl2 aqueous solution with a CsCl aqueous solution, indicating that Ca ions continued being adsorbed onto silanol groups even after removing the aqueous solution.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献