Joint speed feedback improves myoelectric prosthesis adaptation after perturbed reaches in non amputees

Author:

Earley Eric J.,Johnson Reva E.,Sensinger Jonathon W.,Hargrove Levi J.

Abstract

AbstractAccurate control of human limbs involves both feedforward and feedback signals. For prosthetic arms, feedforward control is commonly accomplished by recording myoelectric signals from the residual limb to predict the user’s intent, but augmented feedback signals are not explicitly provided in commercial devices. Previous studies have demonstrated inconsistent results when artificial feedback was provided in the presence of vision; some studies showed benefits, while others did not. We hypothesized that negligible benefits in past studies may have been due to artificial feedback with low precision compared to vision, which results in heavy reliance on vision during reaching tasks. Furthermore, we anticipated more reliable benefits from artificial feedback when providing information that vision estimates with high uncertainty (e.g. joint speed). In this study, we test an artificial sensory feedback system providing joint speed information and how it impacts performance and adaptation during a hybrid positional-and-myoelectric ballistic reaching task. We found that overall reaching errors were reduced after perturbed control, but did not significantly improve steady-state reaches. Furthermore, we found that feedback about the joint speed of the myoelectric prosthesis control improved the adaptation rate of biological limb movements, which may have resulted from high prosthesis control noise and strategic overreaching with the positional control and underreaching with the myoelectric control. These results provide insights into the relevant factors influencing the improvements conferred by artificial sensory feedback.

Funder

National Institutes of Health

National Science Foundation, United States

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3