Development and external validation of a predictive model for type 2 diabetic retinopathy

Author:

Li Yongsheng,Hu Bin,Lu Lian,Li Yongnan,Caika Siqingaowa,Song Zhixin,Sen Gan

Abstract

AbstractDiabetes retinopathy (DR) is a critical clinical disease with that causes irreversible visual damage in adults, and may even lead to permanent blindness in serious cases. Early identification and treatment of DR is critical. Our aim was to train and externally validate a prediction nomogram for early prediction of DR. 2381 patients with type 2 diabetes mellitus (T2DM) were retrospective study from the First Affiliated Hospital of Xinjiang Medical University in Xinjiang, China, hospitalised between Jan 1, 2019 and Jun 30, 2022. 962 patients with T2DM from the Suzhou BenQ Hospital in Jiangsu, China hospitalised between Jul 1, 2020 to Jun 30, 2022 were considered for external validation. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression was performed to identify independent predictors and establish a nomogram to predict the occurrence of DR. The performance of the nomogram was evaluated using a receiver operating characteristic curve (ROC), a calibration curve, and decision curve analysis (DCA). Neutrophil, 25-hydroxyvitamin D3 [25(OH)D3], Duration of T2DM, hemoglobin A1c (HbA1c), and Apolipoprotein A1 (ApoA1) were used to establish a nomogram model for predicting the risk of DR. In the development and external validation groups, the areas under the curve of the nomogram constructed from the above five factors were 0.834 (95%CI 0.820–0.849) and 0.851 (95%CI 0.829–0.874), respectively. The nomogram demonstrated excellent performance in the calibration curve and DCA. This research has developed and externally verified that the nomograph model shows a good predictive ability in assessing DR risk in people with type 2 diabetes. The application of this model will help clinicians to intervene early, thus effectively reducing the incidence rate and mortality of DR in the future, and has far-reaching significance in improving the long-term health prognosis of diabetes patients.

Funder

President's Fund of Tarim University

South Xinjiang Key Industry Innovation and Development Support Plan of Xinjiang Production and Construction Corps

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3