Determinants of Brain Rhythm Burst Statistics

Author:

Powanwe Arthur S.,Longtin André

Abstract

AbstractBrain rhythms recorded in vivo, such as gamma oscillations, are notoriously variable both in amplitude and frequency. They are characterized by transient epochs of higher amplitude known as bursts. It has been suggested that, despite their short-life and random occurrence, bursts in gamma and other rhythms can efficiently contribute to working memory or communication tasks. Abnormalities in bursts have also been associated with e.g. motor and psychiatric disorders. It is thus crucial to understand how single cell and connectivity parameters influence burst statistics and the corresponding brain states. To address this problem, we consider a generic stochastic recurrent network of Pyramidal Interneuron Network Gamma (PING) type. Using the stochastic averaging method, we derive dynamics for the phase and envelope of the amplitude process, and find that they depend on only two meta-parameters that combine all the model parameters. This allows us to identify an optimal parameter regime of healthy variability with similar statistics to those seen in vivo; in this regime, oscillations and bursts are supported by synaptic noise. The probability density for the rhythm’s envelope as well as the mean burst duration are then derived using first passage time analysis. Our analysis enables us to link burst attributes, such as duration and frequency content, to system parameters. Our general approach can be extended to different frequency bands, network topologies and extra populations. It provides the much needed insight into the biophysical determinants of rhythm burst statistics, and into what needs to be changed to correct rhythms with pathological statistics.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3