Rho GTPase gene expression and breast cancer risk: a Mendelian randomization analysis

Author:

Kazmi Nabila,Robinson Tim,Zheng Jie,Kar Siddhartha,Martin Richard M.,Ridley Anne J.

Abstract

AbstractThe Rho GTPase family consists of 20 genes encoding intracellular signalling proteins that influence cytoskeletal dynamics, cell migration and cell cycle progression. They are implicated in breast cancer progression but their role in breast cancer aetiology is unknown. As aberrant Rho GTPase activity could be associated with breast cancer, we aimed to determine the potential for a causal role of Rho GTPase gene expression in breast cancer risk, using two-sample Mendelian randomization (MR). MR was undertaken in 122,977 breast cancer cases and 105,974 controls, including 69,501 estrogen receptor positive (ER+) cases and 105,974 controls, and 21,468 ER negative (ER−) cases and 105,974 controls. Single nucleotide polymorphisms (SNPs) underlying expression quantitative trait loci (eQTLs) obtained from normal breast tissue, breast cancer tissue and blood were used as genetic instruments for Rho GTPase expression. As a sensitivity analysis, we undertook co-localisation to examine whether findings reflected shared causal variants or genomic confounding. We identified genetic instruments for 14 of the 20 human Rho GTPases. Using eQTLs obtained from normal breast tissue and normal blood, we identified evidence of a causal role of RHOD in overall and ER+ breast cancers (overall breast cancer: odds ratio (OR) per standard deviation (SD) increase in expression level 1.06; (95% confidence interval (CI) 1.03, 1.09; P = 5.65 × 10–5) and OR 1.22 (95% CI 1.11, 1.35; P = 5.22 × 10–5) in normal breast tissue and blood respectively). There was a consistent direction of association for ER− breast cancer, although the effect-estimate was imprecisely estimated. Using eQTLs from breast cancer tissue and normal blood there was some evidence that CDC42 was negatively associated with overall and ER + breast cancer risk. The evidence from colocalization analyses strongly supported our MR results particularly for RHOD. Our study suggests a potential causal role of increased RHOD gene expression, and, although the evidence is weaker, a potential protective role for CDC42 gene expression, in overall and ER+ breast cancers. These finding warrant validation in independent samples and further biological investigation to assess whether they may be suitable targets for drug targeting.

Funder

Cancer Research UK

Vice-Chancellor’s Fellowship from the University of Bristol

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3