Author:
Asghari Elmira,Moosavi Ali,Hannani Siamak Kazemzadeh
Abstract
AbstractDroplet-based microfluidic logic gates have many applications in diagnostic assays and biosciences due to their automation and the ability to be cascaded. In spite of many bio-fluids, such as blood exhibit non-Newtonian characteristics, all the previous studies have been concerned with the Newtonian fluids. Moreover, none of the previous studies has investigated the operating regions of the logic gates. In this research, we consider a typical AND/OR logic gate with a power-law fluid. We study the effects of important parameters such as the power-law index, the droplet length, the capillary number, and the geometrical parameters of the microfluidic system on the operating regions of the system. The results indicate that AND/OR states mechanism function in opposite directions. By increasing the droplet length, the capillary number and the power-law index, the operating region of AND state increases while the operating region of OR state reduces. Increasing the channel width will decrease the operating region of AND state while it increases the operating region of OR state. For proper operation of the logic gate, it should work in both AND/OR states appropriately. By combining the operating regions of these two states, the overall operating region of the logic gate is achieved.
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献