Abstract
AbstractComputed tomography (CT) has been developed as a nondestructive technique for observing minute internal images in samples. It has been difficult to obtain photorealistic (clean or clear) CT images due to various unwanted artifacts generated during the CT scanning process, along with the limitations of back-projection algorithms. Recently, an iterative optimization algorithm has been developed that uses an entire sinogram to reduce errors caused by artifacts. In this paper, we introduce a new quantum algorithm for reconstructing CT images. This algorithm can be used with any type of light source as long as the projection is defined. Assuming an experimental sinogram produced by a Radon transform, to find the CT image of this sinogram, we express the CT image as a combination of qubits. After acquiring the Radon transform of the undetermined CT image, we combine the actual sinogram and the optimized qubits. The global energy optimization value used here can determine the value of qubits through a gate model quantum computer or quantum annealer. In particular, the new algorithm can also be used for cone-beam CT image reconstruction and for medical imaging.
Funder
Ministry of Science and ICT, South Korea
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献