A stochastic programming approach for EOL electric vehicle batteries recovery network design under uncertain conditions

Author:

Yan Wei,Wang Xiao,Liu Ying,Zhang Xu-mei,Jiang Zhi-gang,Huang Lin

Abstract

AbstractWith the development of the electric vehicle industry, the number of power batteries has increased dramatically. Establishing a recycling EOL (end-of-life) battery network for secondary use is an effective way to solve resource shortage and environmental pollution. However, existing networks are challenging due to the high uncertainty of EOL batteries, e.g., quantity and quality, resulting in a low recycling rate of the recovery network. To fill this gap, this paper proposes a stochastic programming approach for recovery network design under uncertain conditions of EOL batteries. Firstly, a multi-objective model for battery recovery network is established, considering carbon emissions and economic benefits. Secondly, a stochastic programming approach is proposed to clarify the model. Subsequently, the genetic algorithm is employed to solve the proposed model. Finally, a recovery network case of Region T is given to verify the credibility and superiority of the proposed method. The results demonstrate that the proposed model reduces carbon emissions by 20 metric tons and increases overall economic benefits by 10 million yuan in Region T compared to the deterministic model. Furthermore, the two portions affecting the optimization results are also discussed to provide a reference for reducing carbon emissions and improving economic efficiency in recycling networks.

Funder

National Natural Science Foundation of China

“The 14th Five Year Plan” Hubei Provincial advantaged characteristic disciplines(groups) project of Wuhan University of Science and Technology

the Logistics Education Reform and Research Project

the Chunhui Plan of the Ministry of Education, grant number

the science and technology Project of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Reference68 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3