Enhanced intelligent approach for determination of crude oil viscosity at reservoir conditions

Author:

Peiro Ahmady Langeroudy Kiana,Kharazi Esfahani Parsa,Khorsand Movaghar Mohammad Reza

Abstract

AbstractOil viscosity plays a prominent role in all areas of petroleum engineering, such as simulating reservoirs, predicting production rate, evaluating oil well performance, and even planning for thermal enhanced oil recovery (EOR) that involves fluid flow calculations. Experimental methods of determining oil viscosity, such as the rotational viscometer, are more accurate than other methods. The compositional method can also properly estimate oil viscosity. However, the composition of oil should be determined experimentally, which is costly and time-consuming. Therefore, the occasional inaccessibility of experimental data may make it inevitable to look for convenient methods for fast and accurate prediction of oil viscosity. Hence, in this study, the error in viscosity prediction has been minimized by taking into account the amount of dissolved gas in oil (solution gas–oil ratio: Rs) as a representative of oil composition along with other conventional black oil features including temperature, pressure, and API gravity by employing recently developed machine learning methods based on the gradient boosting decision tree (GBDT): extreme gradient boosting (XGBoost), CatBoost, and GradientBoosting. Moreover, the advantage of the proposed method lies in its independence to input viscosity data in each pressure region/stage. The results were then compared with well-known correlations and machine-learning methods employing the black oil approach applying least square support vector machine (LSSVM) and compositional approach implementing decision trees (DTs). XGBoost is offered as the best method with its greater precision and lower error. It provides an overall average absolute relative deviation (AARD) of 1.968% which has reduced the error of the compositional method by half and the black oil method (saturated region) by five times. This shows the proper viscosity prediction and corroborates the applied method's performance.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3