Isotopic signatures and source apportionment of Pb in ambient PM2.5

Author:

Jung Chien-Cheng,Chou Charles C.-K.,Huang Yi-Tang,Chang Shih-Yu,Lee Chung-Te,Lin Chuan-Yao,Cheung Hing-Cho,Kuo Wei-Chen,Chang Chih-Wei,Chang Shuenn-Chin

Abstract

AbstractParticulate lead (Pb) is a primary air pollutant that affects society because of its health impacts. This study investigates the source sectors of Pb associated with ambient fine particulate matter (PM2.5) over central-western Taiwan (CWT) with new constraints on the Pb-isotopic composition. We demonstrate that the contribution of coal-fired facilities is overwhelming, which is estimated to reach 35 ± 16% in the summertime and is enhanced to 57 ± 24% during the winter monsoon seasons. Moreover, fossil-fuel vehicles remain a major source of atmospheric Pb, which accounts for 12 ± 5%, despite the current absence of a leaded gasoline supply. Significant seasonal and geographical variations in the Pb-isotopic composition are revealed, which suggest that the impact of East Asian (EA) pollution outflows is important in north CWT and drastically declines toward the south. We estimate the average contribution of EA outflows as accounting for 35 ± 15% (3.6 ± 1.5 ng/m3) of the atmospheric Pb loading in CWT during the winter monsoon seasons.

Funder

Environmental Protection Administration, Executive Yuan, R.O.C. Taiwan

Academia Sinica

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3