Utilizing a novel high-resolution malaria dataset for climate-informed predictions with a deep learning transformer model

Author:

Pillay Micheal T.,Minakawa Noboru,Kim Yoonhee,Kgalane Nyakallo,Ratnam Jayanthi V.,Behera Swadhin K.,Hashizume Masahiro,Sweijd Neville

Abstract

AbstractClimatic factors influence malaria transmission via the effect on the Anopheles vector and Plasmodium parasite. Modelling and understanding the complex effects that climate has on malaria incidence can enable important early warning capabilities. Deep learning applications across fields are proving valuable, however the field of epidemiological forecasting is still in its infancy with a lack of applied deep learning studies for malaria in southern Africa which leverage quality datasets. Using a novel high resolution malaria incidence dataset containing 23 years of daily data from 1998 to 2021, a statistical model and XGBOOST machine learning model were compared to a deep learning Transformer model by assessing the accuracy of their numerical predictions. A novel loss function, used to account for the variable nature of the data yielded performance around + 20% compared to the standard MSE loss. When numerical predictions were converted to alert thresholds to mimic use in a real-world setting, the Transformer’s performance of 80% according to AUROC was 20–40% higher than the statistical and XGBOOST models and it had the highest overall accuracy of 98%. The Transformer performed consistently with increased accuracy as more climate variables were used, indicating further potential for this prediction framework to predict malaria incidence at a daily level using climate data for southern Africa.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3