Author:
Grist James T.,Withey Stephanie,Bennett Christopher,Rose Heather E. L.,MacPherson Lesley,Oates Adam,Powell Stephen,Novak Jan,Abernethy Laurence,Pizer Barry,Bailey Simon,Clifford Steven C.,Mitra Dipayan,Arvanitis Theodoros N.,Auer Dorothee P.,Avula Shivaram,Grundy Richard,Peet Andrew C.
Abstract
AbstractBrain tumors represent the highest cause of mortality in the pediatric oncological population. Diagnosis is commonly performed with magnetic resonance imaging. Survival biomarkers are challenging to identify due to the relatively low numbers of individual tumor types. 69 children with biopsy-confirmed brain tumors were recruited into this study. All participants had perfusion and diffusion weighted imaging performed at diagnosis. Imaging data were processed using conventional methods, and a Bayesian survival analysis performed. Unsupervised and supervised machine learning were performed with the survival features, to determine novel sub-groups related to survival. Sub-group analysis was undertaken to understand differences in imaging features. Survival analysis showed that a combination of diffusion and perfusion imaging were able to determine two novel sub-groups of brain tumors with different survival characteristics (p < 0.01), which were subsequently classified with high accuracy (98%) by a neural network. Analysis of high-grade tumors showed a marked difference in survival (p = 0.029) between the two clusters with high risk and low risk imaging features. This study has developed a novel model of survival for pediatric brain tumors. Tumor perfusion plays a key role in determining survival and should be considered as a high priority for future imaging protocols.
Funder
Little Princess Trust
Cancer Research UK and NIHR Experimental Cancer Medicine Centre Paediatric Network
Action Medical Research and the Brain Tumour Charity
Medical Research Council – Health Data Research UK Substantive Site
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献