Design of the offline test electronics for the nozzle system of proton therapy

Author:

Huang Peng,Yin Zhiguo,Bian Tianjian,Hou Shigang,Guan Fengping,An Shizhong,Wang Yang,Zhang Tianjue,Ji Luyu,Wen Lipeng,Mu Xueer

Abstract

AbstractA set of nozzle equipment for proton therapy is currently under development at China Institute of Atomic Energy (CIAE). To facilitate the off-line commissioning of the whole equipment, a set of ionization chamber signal generation system, known as the test electronics, was designed. The results showed that the system can simulate the beam position, beam fluence (which exhibits a positive correlation with the dose), and other related analog signals generated by the proton beam when it traverses the ionization chamber. Moreover, the accuracy of the simulated beam position is within ± 0.33 mm, and the accuracy of the simulated beam fluence signal is within ± 1%. The test electronics can output analog signals representing environmental parameters. The test electronics meets the design requirements, which can be used for the commissioning of the nozzle system as well as the treatment control system without the presence of the proton beam.

Funder

National Natural Science Foundation of China

Leading Innovation Project of China National Nuclear Corporation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3