Superconductivity of barium with highest transition temperatures in metallic materials at ambient pressure

Author:

Mito Masaki,Tsuji Hiroki,Tajiri Takayuki,Nakamura Kazuma,Tang Yongpeng,Horita Zenji

Abstract

AbstractPressure-induced superconductivity often occurs following structural transition under hydrostatic pressure (PHP) but disappears after the pressure is released. In the alkali-earth metal barium, superconductivity appears after structural transformation from body-centered cubic structure to hexagonal-close-packed (hcp) structure at PHP = 5 GPa, and the superconducting transition temperature (Tc) reaches a maximum of 5 K at PHP = 18 GPa. Furthermore, by stabilizing the low-temperature phase at PHP ~ 30 GPa, Tc reached a higher level of 8 K. Herein, we demonstrate a significantly higher Tc superconductivity in Ba even at ambient pressure. This was made possible through severe plastic deformation of high-pressure torsion (HPT). In this HPT-processed Ba, we observed superconductivity at Tc = 3 K and Tc = 24 K in the quasi-stabilized hcp and orthorhombic structures, respectively. In particular, the latter Tc represents the highest value achieved at ambient pressure among single-element superconducting metals, including intermetallics. The phenomenon is attributed to a strained high-pressure phase, stabilized by residual strains generated from lattice defects such as dislocations and grain boundaries. Significantly, the observed Tc far exceeds predictions from DFT calculations under normal hydrostatic compressions. The study demonstrates the importance of utilizing high-pressure strained phases as quasi-stable superconducting states at ambient pressure.

Funder

Grant-in-Aid for Scientific Research from MEXT, Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3