Evaluation of agricultural non-point source pollution using an in-situ and automated photochemical flow analysis system

Author:

Chen Yongqi,Awais Muhammad,Wu Junfeng,Li Zhenfeng,Abbas Naqvi Syed Muhammad Zaigham,Abdulraheem Mukhtar Iderawumi,Zhang Hao,Wang Ling,Zhang Wei,Raghavan Vijaya,Hu Jiandong

Abstract

AbstractOff-line leachate collection from agricultural landscapes cannot guarantee precise evaluation of agricultural non-point source (ANPS) due to geospatial variations, time, and transportation from the field to the laboratory. Implementing an in-situ nitrogen and phosphorous monitoring system with a robust photochemical flow analysis is imperative for precision agriculture, enabling real-time intervention to minimize non-point source pollution and overcome the limitations posed by conventional analysis in laboratory. A reliable, robust and in-situ approach was proposed to monitor nitrogen and phosphorous for determining ANPS pollution. In this study, a home-made porous ceramic probe and the frequency domain reflectometer (FDR) based water content sensors were strategically placed at different soil depths to facilitate the collection of leachates. These solutions were subsequently analyzed by in-situ photochemical flow analysis monitoring system built across the field to estimate the concentrations of phosphorus and nitrogen. After applying both natural and artificial irrigation to the agricultural landscape, at least 10 mL of soil leachates was consistently collected using the porous ceramic probe within 20 min, regardless of the depth of the soil layers when the volumetric soil water contents are greater than 19%. The experimental results showed that under different weather conditions and irrigation conditions, the soil water content of 50 cm and 90 cm below the soil surface was 19.58% and 26.08%, respectively. The average concentrations of NH4+-N, NO3-N, PO43− are 0.584 mg/L, 15.7 mg/L, 0.844 mg/L, and 0.562 mg/L, 16.828 mg/L and 0.878 mg/L at depths of 50 cm and 90 cm below the soil surface, respectively. Moreover, the comparison with conventional laboratory spectroscopic analysis confirmed R2 values of 0.9951, 0.9943, 0.9947 average concentration ranges of NH4+-N, NO3-N, and PO43−, showcasing the accuracy and reliability of robust photochemical flow analysis in-situ monitoring system. The suggested monitoring system can be helpful in the assessment of soil nutrition for precision agriculture.

Funder

National Key Technologies R & D Program of China

Henan Provincial Important Project

Henan Center for Outstanding Overseas Scientists

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3