Phyto-assisted synthesis of zinc oxide nanoparticles using Bauhinia variegata buds extract and evaluation of their multi-faceted biological potentials

Author:

Arafat Sehrish,Iqbal Javed,Abbasi Banzeer Ahsan,Ijaz Shumaila,Yaseen Tabassum,Murtaza Ghulam,Ullah Rafi,Zarshan Farishta,Ullah Zakir,Sahito Zulfiqar Ali,Almutairi Saeedah Musaed,Elshikh Mohamed S.,Aghayeva Saltanat,Rizwan Muhammad,Iqbal Rashid

Abstract

AbstractZinc oxide nanoparticles have wide range biological, biomedical and environmental applications. However, traditional nanofabrication of ZnONPs uses various toxic chemicals and organic solvents which limit their bio-applications. To overcome this hurdle, Bauhinia variegata derived buds extract was utilized to fabricate ZnONPs. The greenly generated ZnONPs were successfully prepared and extensively characterized using different analytical tools and the average crystalline size was calculated as 25.47 nm. Further, bioengineered ZnONPs were explored for multiple biological activities that revealed excellent therapeutic potentials. The antibacterial potential was determined using different bacterial strains. Pseudomonas aeruginosa (MIC: 137.5 µg/mL) was reported to be the most resistant variant while Bacillus subtilis (MIC: 34.38 µg/mL) was observed to be most susceptible bacterial strain. DPPH radical scavenging potential was measured to determine the antioxidant capacity of ZnONPs and the highest scavenging potential was observed as 82% at highest of 300 µg/mL. The fungicidal effect of green ZnONPs in comparison with Amphotericin B was assessed against five selected pathogenic fungal strains. The results revealed, Fusarium solani (MIC: 46.875 µg/mL) was least resistant and Aspergillus flavus (MIC: 187.5 µg/mL) was most resistant in fungicidal examination. Cytotoxicity potential of B.V@ZnONPs was analyzed against newly hatched nauplii of brine shrimps. The results for greenly produced ZnONPs was recorded as 39.78 µg/mL while 3.006 µg/mL was reported for positive control vincristine sulphate. The results confirmed the category of general cytotoxic for greenly synthesized nano sized B.V@ZnONPs.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3