In situ gold adsorption experiment at an acidic hot spring using a blue-green algal sheet

Author:

Nozaki Tatsuo,Fukushima Yasuyuki,Okada Satoshi,Takaya Yutaro,Makabe Akiko,Watanabe Masayuki

Abstract

AbstractGold (Au), as one of the most precious metal resources that is used for both industrial products and private ornaments, is a global investment target, and mining companies are making huge investments to discover new Au deposits. Here, we report in situ Au adsorption in an acidic hot spring by a unique adsorption sheet made from blue-green algae with a high preferential adsorption ability for Au. The results of in situ Au adsorption experiments conducted for various reaction times ranging from 0.2 h to 7 months showed that a maximum Au concentration of 30 ppm was adsorbed onto the blue-green algal sheet after a reaction time of 7 months. The Au concentration in the hot spring water was below the detection limit (< 1 ppt); therefore, Au was enriched by preferential adsorption onto the blue-green algal sheet by a factor of more than ~ 3 × 107. Thus, our gold recovery method has a high potential to recover Au even from an Au-poor solution such as hot spring water or mine wastewater with a low impact on the environment.

Funder

Japan Society for the Promotion of Science

Canon Research Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3