Abstract
AbstractIn this work, amine-carbon quantum dots (CQDs)/rhodamine B (RhB) ratiometric fluorescent (RF) sensor was employed for effective and selective determination of tamsulosin hydrochloride (TMS) based on a dual-emission fluorescence system. Although the function of amine-CQDs is to transfer the specific interaction between TMS and sensor into detectable fluorescence (FL) signals, RhB as a reference unit has been employed to omit internal and external effects. The FL signal was quenched by adding the TMS at 442 nm; nevertheless, it did not change at 569 nm. The material characterization and investigation of the sensing mechanism were done. The optimization of pH, the volumetric ratio of CQDs to RhB, and interaction time parameters were carried out by the one-variable-at-a-time (OVAT) method. The quantitative analysis of the concentration of TMS for this RF sensor in a linear range of 0.446–7.083 μg mL−1 (1.091–17.338 μM) was obtained (R2 = 0.9969, n = 3) under optimum conditions. The limit of detection and quantitation values were estimated to be 0.033 μg mL−1 (0.081 μM) and 0.109 μg mL−1 (0.267 μM), respectively. The repeatability of intra-day and inter-day were less than one percent. This inexpensive RF probe was well applied to determine TMS in biological fluids, and acceptable achievements were obtained.
Funder
Iran University of Science and Technology
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献