Sperm motility assessed by deep convolutional neural networks into WHO categories

Author:

Haugen Trine B.,Witczak Oliwia,Hicks Steven A.,Björndahl Lars,Andersen Jorunn M.,Riegler Michael A.

Abstract

AbstractSemen analysis is central in infertility investigation. Manual assessment of sperm motility according to the WHO recommendations is the golden standard, and extensive training is a requirement for accurate and reproducible results. Deep convolutional neural networks (DCNN) are especially suitable for image classification. In this study, we evaluated the performance of the DCNN ResNet-50 in predicting the proportion of sperm in the WHO motility categories. Two models were evaluated using tenfold cross-validation with 65 video recordings of wet semen preparations from an external quality assessment programme for semen analysis. The corresponding manually assessed data was obtained from several of the reference laboratories, and the mean values were used for training of the DCNN models. One model was trained to predict the three categories progressive motility, non-progressive motility, and immotile spermatozoa. Another model was used in predicting four categories, where progressive motility was differentiated into rapid and slow. The resulting average mean absolute error (MAE) was 0.05 and 0.07, and the average ZeroR baseline was 0.09 and 0.10 for the three-category and the four-category model, respectively. Manual and DCNN-predicted motility was compared by Pearson’s correlation coefficient and by difference plots. The strongest correlation between the mean manually assessed values and DCNN-predicted motility was observed for % progressively motile spermatozoa (Pearson’s r = 0.88, p < 0.001) and % immotile spermatozoa (r = 0.89, p < 0.001). For rapid progressive motility, the correlation was moderate (Pearson’s r = 0.673, p < 0.001). The median difference between manual and predicted progressive motility was 0 and 2 for immotile spermatozoa. The largest bias was observed at high and low percentages of progressive and immotile spermatozoa. The DCNN-predicted value was within the range of the interlaboratory variation of the results for most of the samples. In conclusion, DCNN models were able to predict the proportion of spermatozoa into the WHO motility categories with significantly lower error than the baseline. The best correlation between the manual and the DCNN-predicted motility values was found for the categories progressive and immotile. Of note, there was considerable variation between the mean motility values obtained for each category by the reference laboratories, especially for rapid progressive motility, which impacts the training of the DCNN models.

Funder

The Norwegian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3