Author:
Eid Aline,Hester Jimmy G. D.,Tentzeris Manos M.
Abstract
Abstract5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Mercer, D. Global Connected and IoT Device Forecast Update. https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update (2019).
2. Hester, J. G. D. & Tentzeris, M. M. Inkjet-printed flexible mm-wave Van-Atta reflectarrays: A solution for ultra-long-range dense multi-tag and multi-sensing chipless RFID implementations for IoT smart skins. IEEE Trans. Microw. Theory Tech. 57, 1303–1309 (2017).
3. Lee, D.-J., Lee, S.-J., Hwang, I.-J., Lee, W.-S. & Yu, J.-W. Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer. IEEE Trans. Microw. Theory Tech. 65, 3409–3418 (2017).
4. Kuek, J. et al. A compact butler matrix for wireless power transfer to aid electromagnetic energy harvesting for sensors. In 2017 IEEE Asia Pacific Microwave Conference (APMC) 334–336 (2017).
5. Bito, J. et al. Millimeter-wave ink-jet printed RF energy harvester for next generation flexible electronics. In 2017 IEEE Wireless Power Transfer Conference (WPTC) 1–4 (2017).
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Super Realized Gain Antenna Array;IEEE Transactions on Antennas and Propagation;2024-09
2. A High Sensitivity CMOS Rectifier for 5G mm-Wave Energy Harvesting;IEEE Transactions on Circuits and Systems I: Regular Papers;2024-07
3. Enabling On-Demand Low-Power mmWave Repeaters via Passive Beamforming;Proceedings of the 30th Annual International Conference on Mobile Computing and Networking;2024-05-29
4. Millimeter Wave Dual-Polarized Semi-Passive Energy Detection Backscattering RFID;2024 IEEE Wireless Power Technology Conference and Expo (WPTCE);2024-05-08
5. The 2024 Microwave Week 3MT Competition, in Memory of John Bandler: Remembering Our Champion;IEEE Microwave Magazine;2024-05