Theoretical study on the structure, spectroscopic, and current–voltage behavior of 11-Cis and Trans retinal isomers in rhodopsin

Author:

Hamedian Amin,Vakili Mohammad,Brandán Silvia A.,Akbari Mahmood,Kanaani Ayoub,Darugar Vahidreza

Abstract

AbstractIn this study, the electronic transport properties of 11-Cis and Trans retinal, components of rhodopsin, were investigated as optical molecular switches using the nonequilibrium Green’s function (NEGF) formalism combined with first-principles density functional theory (DFT). These isomers, which can be reversibly converted into each other, were examined in detail. The structural and spectroscopic properties, including infrared (IR), Raman, nuclear magnetic resonance (NMR), and ultraviolet (UV) spectra, were analyzed using the hybrid B3LYP/6–311 +  + G** level of theory. Complete vibrational assignments were performed for both forms utilizing the scaled quantum mechanical force field (SQMFF) methodology. To evaluate the conductivity of these molecules, we utilized current–voltage (I-V) characteristics, transmission spectra, molecular projected self-consistent Hamiltonian (MPSH), HOMO–LUMO gap, and second-order interaction energies (E2). The trendline extrapolation of the current–voltage plots confirmed our findings. We investigated the effect of different electrodes (Ag, Au, Pt) and various connection sites (hollow, top, bridge) on conductivity. The Ag electrode with the hollow site exhibited the highest efficiency. Our results indicate that the Cis form has higher conductivity than the Trans form.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3