Tocilizumab degradation via photo-catalytic ozonation process from aqueous

Author:

Mehralipour Jamal,Akbari Hesam,Adibzadeh Amir,Akbari Hamed

Abstract

AbstractFollowing the advent of the coronavirus pandemic, tocilizumab has emerged as a potentially efficacious therapeutic intervention. The utilization of O3-Heterogeneous photocatalytic process (O3-HPCP) as a hybrid advanced oxidation technique has been employed for the degradation of pollutants. The present study employed a solvothermal technique for the synthesis of the BiOI-MOF composite. The utilization of FTIR, FESEM, EDAX, XRD, UV–vis, BET, TEM, and XPS analysis was employed to confirm the exceptional quality of the catalyst. the study employed an experimental design, subsequently followed by the analysis of collected data in order to forecast the most favorable conditions. The purpose of this study was to investigate the impact of several factors, including reaction time (30–60 min), catalyst dose (0.25–0.5 mg/L), pH levels (4–8), ozone concentration (20–40 mMol/L), and tocilizumab concentration (10–20 mg/L), on the performance of O3-HPCP. The best model was discovered by evaluating the F-value and P-value coefficients, which were found to be 0.0001 and 347.93, respectively. In the given experimental conditions, which include a catalyst dose of 0.46 mg/L, a reaction time of 59 min, a pH of 7.0, and an ozone concentration of 32 mMol/L, the removal efficiencies were found to be 92% for tocilizumab, 79.8% for COD, and 59% for TOC. The obtained R2 value of 0.98 suggests a strong correlation between the observed data and the predicted values, indicating that the reaction rate followed first-order kinetics. The coefficient of synergy for the degradation of tocilizumab was shown to be 1.22. The catalyst exhibited satisfactory outcomes, but with a marginal reduction in efficacy of approximately 3%. The sulfate ion (SO42−) exhibited no influence on process efficiency, whereas the nitrate ion (NO3) exerted the most significant impact among the anions. The progress of the process was impeded by organic scavengers, with methanol exhibiting the most pronounced influence and sodium azide exerting the least significant impact. The efficacy of pure BiOI and NH2-MIL125 (Ti) was diminished when employed in their pure form state. The energy consumption per unit of degradation, denoted as EEO, was determined to be 161.8 KWh/m3-order.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3