In-silico investigations of haemodynamic parameters for a blunt thoracic aortic injury case

Author:

Dadras Rezvan,Jabbari Alireza,Asl Narges Kamaei,Soltani Madjid,Rafiee Farnaz,Parsaee Mozhgan,Golchin Shadi,Pouraliakbar Hamidreza,Sadeghipour Parham,Alimohammadi Mona

Abstract

AbstractAccounting for 1.5% of thoracic trauma, blunt thoracic aortic injury (BTAI) is a rare disease with a high mortality rate that nowadays is treated mostly via thoracic endovascular aortic repair (TEVAR). Personalised computational models based on fluid–solid interaction (FSI) principals not only support clinical researchers in studying virtual therapy response, but also are capable of predicting eventual outcomes. The present work studies the variation of key haemodynamic parameters in a clinical case of BTAI after successful TEVAR, using a two-way FSI model. The three-dimensional (3D) patient-specific geometries of the patient were coupled with three-element Windkessel model for both prior and post intervention cases, forcing a correct prediction of blood flow over each section. Results showed significant improvement in velocity and pressure distribution after stenting. High oscillatory, low magnitude shear (HOLMES) regions require careful examination in future follow-ups, since thrombus formation was confirmed in some previously clinically reported cases of BTAI treated with TEVAR. The strength of swirling flows along aorta was also damped after stent deployment. Highlighting the importance of haemodynamic parameters in case-specific therapies. In future studies, compromising motion of aortic wall due to excessive cost of FSI simulations can be considered and should be based on the objectives of studies to achieve a more clinical-friendly patient-specific CFD model

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3