Investigation of MicroRNA and transcription factor mediated regulatory network for silicosis using systems biology approach

Author:

Choudhari J. K.,Verma M. K.,Choubey J.,Sahariah B. P.

Abstract

AbstractSilicosis is a major health issue among workers exposed to crystalline silica. Genetic susceptibility has been implicated in silicosis. The present research demonstrates key regulatory targets and propagated network of gene/miRNA/transcription factor (TF) with interactions responsible for silicosis by integrating publicly available microarray data using a systems biology approach. Array quality is assessed with the Quality Metrics package of Bioconductor, limma package, and the network is constructed using Cytoscape. We observed and enlist 235 differentially expressed genes (DEGs) having up-regulation expression (85 nos) and down-regulation expression (150 nos.) in silicosis; and 24 TFs for the regulation of these DEGs entangled with thousands of miRNAs. Functional enrichment analysis of the DEGs enlighten that, the maximum number of DEGs are responsible for biological process viz, Rab proteins signal transduction (11 nos.) and Cellular Senescence (20 nos.), whereas IL-17 signaling pathway (16 nos.) and Signalling by Nuclear Receptors (14 nos.) etc. are Biological Pathway involving more DEGs. From the identified 1100 high target microRNA (miRNA)s involved in silicosis, 1055 miRNAs are found to relate with down-regulated genes and 847 miRNAs with up-regulated genes. The CDK19 gene (Up-regulated) is associated with 617 miRNAs whereas down-regulated gene ARID5B is regulated by as high as 747 high target miRNAs. In Prediction of Small-molecule signatures, maximum scoring small-molecule combinations for the DEGs have shown that CGP-60774 (with 20 combinations), alvocidib (with 15 combinations) and with AZD-7762 (24 combinations) with few other drugs having the high probability of success.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3