Author:
Morijiri Kensei,Mihana Takatomo,Kanno Kazutaka,Naruse Makoto,Uchida Atsushi
Abstract
AbstractDecision making using photonic technologies has been intensively researched for solving the multi-armed bandit problem, which is fundamental to reinforcement learning. However, these technologies are yet to be extended to large-scale multi-armed bandit problems. In this study, we conduct a numerical investigation of decision making to solve large-scale multi-armed bandit problems by controlling the biases of chaotic temporal waveforms generated in semiconductor lasers with optical feedback. We generate chaotic temporal waveforms using the semiconductor lasers, and each waveform is assigned to a slot machine (or choice) in the multi-armed bandit problem. The biases in the amplitudes of the chaotic waveforms are adjusted based on rewards using the tug-of-war method. Subsequently, the slot machine that yields the maximum-amplitude chaotic temporal waveform with bias is selected. The scaling properties of the correct decision-making process are examined by increasing the number of slot machines to 1024, and the scaling exponent of the power-law distribution is 0.97. We demonstrate that the proposed method outperforms existing software algorithms in terms of the scaling exponent. This result paves the way for photonic decision making in large-scale multi-armed bandit problems using photonic accelerators.
Funder
Japan Society for the Promotion of Science
Telecommunications Advancement Foundation
Core Research for Evolutional Science and Technology
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献