Decision making for large-scale multi-armed bandit problems using bias control of chaotic temporal waveforms in semiconductor lasers

Author:

Morijiri Kensei,Mihana Takatomo,Kanno Kazutaka,Naruse Makoto,Uchida Atsushi

Abstract

AbstractDecision making using photonic technologies has been intensively researched for solving the multi-armed bandit problem, which is fundamental to reinforcement learning. However, these technologies are yet to be extended to large-scale multi-armed bandit problems. In this study, we conduct a numerical investigation of decision making to solve large-scale multi-armed bandit problems by controlling the biases of chaotic temporal waveforms generated in semiconductor lasers with optical feedback. We generate chaotic temporal waveforms using the semiconductor lasers, and each waveform is assigned to a slot machine (or choice) in the multi-armed bandit problem. The biases in the amplitudes of the chaotic waveforms are adjusted based on rewards using the tug-of-war method. Subsequently, the slot machine that yields the maximum-amplitude chaotic temporal waveform with bias is selected. The scaling properties of the correct decision-making process are examined by increasing the number of slot machines to 1024, and the scaling exponent of the power-law distribution is 0.97. We demonstrate that the proposed method outperforms existing software algorithms in terms of the scaling exponent. This result paves the way for photonic decision making in large-scale multi-armed bandit problems using photonic accelerators.

Funder

Japan Society for the Promotion of Science

Telecommunications Advancement Foundation

Core Research for Evolutional Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3