3-D electromagnetic radiative non-Newtonian nanofluid flow with Joule heating and higher-order reactions in porous materials

Author:

Alaidrous Amel A.,Eid Mohamed R.

Abstract

AbstractThe aim of this work is to discuss the effect of mth-order reactions on the magnetic flow of hyperbolic tangent nanofluid through extending surface in a porous material with thermal radiation, several slips, Joule heating, and viscous dissipation. In order to convert non-linear partial differential governing equations into ordinary ones, a technique of similarity transformations has been implemented and then solved using the OHAM (optimal homotopy analytical method). The outcomes of novel effective parameters on the non-dimensional interesting physical quantities are established utilizing the tabular and pictorial outlines. After a comparison with previous literature studies, the results were finely compliant. The study explores that the reduced Nusselt number is diminished for the escalating values of radiation, porosity, and source (sink) parameters. It is found that the order of the chemical reaction m = 2 is dominant in concentration as well as mass transfer in both destructive and generative reactions. When m reinforces for a destructive reaction, mass transfer is reduced with 34.7% and is stabled after η = 3. In the being of the destructive reaction and Joule heating, the nanofluid's temperature is enhanced.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3