Subsystem domination influence on magnetization reversal in designed magnetic patterns in ferrimagnetic Tb/Co multilayers

Author:

Frąckowiak Łukasz,Stobiecki Feliks,Chaves-O’Flynn Gabriel David,Urbaniak Maciej,Schmidt Marek,Matczak Michał,Maziewski Andrzej,Reginka Meike,Ehresmann Arno,Kuświk Piotr

Abstract

AbstractRecent results showed that the ferrimagnetic compensation point and other characteristic features of Tb/Co ferrimagnetic multilayers can be tailored by He+ ion bombardment. With appropriate choices of the He+ ion dose, we prepared two types of lattices composed of squares with either Tb or Co domination. The magnetization reversal of the first lattice is similar to that seen in ferromagnetic heterostructures consisting of areas with different switching fields. However, in the second lattice, the creation of domains without accompanying domain walls is possible. These domain patterns are particularly stable because they simultaneously lower the demagnetizing energy and the energy associated with the presence of domain walls (exchange and anisotropy). For both lattices, studies of magnetization reversal show that this process takes place by the propagation of the domain walls. If they are not present at the onset, the reversal starts from the nucleation of reversed domains and it is followed by domain wall propagation. The magnetization reversal process does not depend significantly on the relative sign of the effective magnetization in areas separated by domain walls.

Funder

Narodowym Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3