Distinct nonlinear spectrotemporal integration in primary and secondary auditory cortices

Author:

Kline Amber M.,Aponte Destinee A.,Kato Hiroyuki K.

Abstract

AbstractAnimals sense sounds through hierarchical neural pathways that ultimately reach higher-order cortices to extract complex acoustic features, such as vocalizations. Elucidating how spectrotemporal integration varies along the hierarchy from primary to higher-order auditory cortices is a crucial step in understanding this elaborate sensory computation. Here we used two-photon calcium imaging and two-tone stimuli with various frequency-timing combinations to compare spectrotemporal integration between primary (A1) and secondary (A2) auditory cortices in mice. Individual neurons showed mixed supralinear and sublinear integration in a frequency-timing combination-specific manner, and we found unique integration patterns in these two areas. Temporally asymmetric spectrotemporal integration in A1 neurons suggested their roles in discriminating frequency-modulated sweep directions. In contrast, temporally symmetric and coincidence-preferring integration in A2 neurons made them ideal spectral integrators of concurrent multifrequency sounds. Moreover, the ensemble neural activity in A2 was sensitive to two-tone timings, and coincident two-tones evoked distinct ensemble activity patterns from the linear sum of component tones. Together, these results demonstrate distinct roles of A1 and A2 in encoding complex acoustic features, potentially suggesting parallel rather than sequential information extraction between these regions.

Funder

National Institute of Neurological Disorders and Stroke

National Institute on Deafness and Other Communication Disorders

Pew Charitable Trusts

Whitehall Foundation

Esther A. and Joseph Klingenstein Fund

Foundation of Hope for Research and Treatment of Mental Illness

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3