Enhanced rate capabilities in a glass-ceramic-derived sodium all-solid-state battery

Author:

Yamauchi HideoORCID,Ikejiri JunichiORCID,Tsunoda Kei,Tanaka Ayumu,Sato Fumio,Honma TsuyoshiORCID,Komatsu TakayukiORCID

Abstract

AbstractAn all-solid-state battery (ASSB) with a new structure based on glass-ceramic that forms Na2FeP2O7 (NFP) crystals, which functions as an active cathode material, is fabricated by integrating it with a β″-alumina solid electrolyte. Two important factors that influence the rate capability of this ASSB were optimised. First, the particle size of the precursor glass powder from which the NFP crystals are formed was decreased. Consequently, the onset temperature of crystallisation shifts to a lower temperature, which enables the softening of NFP crystals and their integration with β″-alumina at a low temperature, without the interdiffusion of different crystal phases or atoms. Second, the interface between the β″-alumina solid electrolyte and cathode active materials which consisted of the NFP-crystallised glass and acetylene black used as a conductive additive, is increased to increase the insertion/release of ions and electrons from the active material during charge/discharge processes. Thus, the internal resistance of the battery is reduced considerably to 120 Ω. Thus, an ASSB capable of rapid charge/discharge that can operate not only at room temperature (30 °C) but also at −20 °C is obtained. This technology is an innovative breakthrough in oxide-based ASSBs, considering that the internal resistance of liquid electrolyte-based Li-ion batteries and sulphide-based ASSBs is ~10 Ω.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3