Author:
Terzis Dimitrios,Hicher Patrick,Laloui Lyesse
Abstract
AbstractThe present study integrates direct electric currents into traditional calcium carbonate mineralization to investigate electrochemical interactions and the subsequent crystalline growth of CaCO3 bonds in sand. A specific line of focus refers to the effect of three chemical reactive species involved in the stimulated geo-chemo-electric system, namely CaCl2, Ca(CH3COO)2 and Ca(CH3CH2(OH)COO)2. By altering treatment conditions and the applied electric field, we capture distinctive trends related to the: (i) overall reaction efficiencies and distribution of CaCO3 crystals is sand samples; (ii) promotion of CaCO3 mineralization due to DC (iii) crystallographic and textural properties of mineralized bonds. The study introduces the concept of EA-MICP which stands for Electrically Assisted Microbially Induced Carbonate Precipitation as a means of improving the efficiency of soil bio-cementation compared to traditional MICP-based works. Results reveal both the detrimental and highly beneficial effects that electric currents can hold in the complex, reactive and transport processes involved. An interesting observation refers to the “doped” morphology of CaCO3 crystals, which precipitate under electric fields, validated by crystallographic analyses and microstructural observations.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献