Ultra-sensitive gas sensor based fano resonance modes in periodic and fibonacci quasi-periodic Pt/PtS2 structures

Author:

Zaki Shrouk E.,Basyooni Mohamed A.

Abstract

AbstractUltra-sensitive greenhouse gas sensors for CO2, N2O, and CH4 gases based on Fano resonance modes have been observed through periodic and quasi-periodic phononic crystal structures. We introduced a novel composite based on metal/2D transition metal dichalcogenides (TMDs), namely; platinum/platinum disulfide (Pt/PtS2) composite materials. Our gas sensors were built based on the periodic and quasi-periodic phononic crystal structures of simple Fibonacci (F(5)) and generalized Fibonacci (FC(7, 1)) quasi-periodic phononic crystal structures. The FC(7, 1) structure represented the highest sensitivity for CO2, N2O, and CH4 gases compared to periodic and F(5) phononic crystal structures. Moreover, very sharp Fano resonance modes were observed for the first time in the investigated gas sensor structures, resulting in high Fano resonance frequency, novel sensitivity, quality factor, and figure of merit values for all gases. The FC(7, 1) quasi-periodic structure introduced the best layer sequences for ultra-sensitive phononic crystal greenhouse gas sensors. The highest sensitivity was introduced by FC(7, 1) quasiperiodic structure for the CH4 with a value of 2.059 (GHz/m.s−1). Further, the temperature effect on the position of Fano resonance modes introduced by FC(7, 1) quasi-periodic PhC gas sensor towards CH4 gas has been introduced in detail. The results show the highest sensitivity at 70 °C with a value of 13.3 (GHz/°C). Moreover, the highest Q and FOM recorded towards CH4 have values of 7809 and 78.1 (m.s−1)−1 respectively at 100 °C.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3