The chemical stoichiometry characteristics of plant-soil carbon and nitrogen in subtropical Pinus massoniana natural forests

Author:

Xiang Yunxi,Pan Ping,Ouyang Xunzhi,Zang Hao,Rao Jinfeng

Abstract

AbstractEcological stoichiometry is essential for understanding changes in ecosystem structure and nutrient cycling in forest ecosystems. However, the stoichiometric characteristics of carbon (C) and nitrogen (N) in different organs or layers, such as leaves, branches, trunks, roots, understory vegetation, litter, and soil within a forest ecosystem, have remained poorly understood. In this study, four age groups of Pinus massoniana natural forest including young, middle-aged, near-mature, and mature were selected as research subjects to illustrate the C and N stoichiometry interactions among different layers and organs in the forest ecosystem. The results showed that the average C and N concentrations in the leaves of the tree layer, shrub layer, and herb aboveground parts (HAP) were higher than that of other tree and shrub organs, as well as the herb underground parts (HUP), respectively. The N concentrations of tree branches and trunks showed a trend of increase first and decrease later from young to mature phases, but the C:N ratios presented an opposite trend. The C concentrations.in all tissues in shrubs showed a first decline and then a rise with age. As age progressed, the N concentration in each ecosystem layer increased gradually and demonstrated high synergy. The mineralization of organic matter in the soil was generally slow. The C concentrations in the understory vegetation layer were significantly positively correlated with the C concentrations in the litter layer but negatively correlated with the soil layer, and the C concentrations in the litter layer were also significantly negatively correlated with the C concentrations in the soil layer. The research findings can provide a reference basis for the formulation of nutrient regulation and sustainable management measures in the natural forests of P. massoniana in the study area.

Funder

the National Natural Science Foundation of China

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3