3D printable biomimetic rod with superior buckling resistance designed by machine learning

Author:

Challapalli Adithya,Li Guoqiang

Abstract

AbstractOur mother nature has been providing human beings with numerous resources to inspire from, in building a finer life. Particularly in structural design, plenteous notions are being drawn from nature in enhancing the structural capacity as well as the appearance of the structures. Here plant stems, roots and various other structures available in nature that exhibit better buckling resistance are mimicked and modeled by finite element analysis to create a training database. The finite element analysis is validated by uniaxial compression to buckling of 3D printed biomimetic rods using a polymeric ink. After feature identification, forward design and data filtering are conducted by machine learning to optimize the biomimetic rods. The results show that the machine learning designed rods have 150% better buckling resistance than all the rods in the training database, i.e., better than the nature’s counterparts. It is expected that this study opens up a new opportunity to design engineering rods or columns with superior buckling resistance such as in bridges, buildings, and truss structures.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3