Estimating plant–insect interactions under climate change with limited data

Author:

Tamura Yui,Osawa TakeshiORCID,Tabuchi Ken,Yamasaki Kazuhisa,Niiyama Tokumitsu,Sudo Shigeto,Ishigooka Yasushi,Yoshioka Akira,Takada Mayura B.

Abstract

AbstractClimate change may disrupt species–species interactions via phenological changes in one or both species. To predict and evaluate the influence of climate change on these interactions, long-term monitoring and sampling over large spatial areas are required; however, funding and labor constraints limit data collection. In this study, we predict and evaluate the plant–insect interactions with limited data sets. We examined plant–insect interaction using observational data for development of the crop plant rice (Oryza sativa) and an effective accumulated temperature (EAT) model of two mirid bugs (Stenotus rubrovittatus and Trigonotylus caelestialium). We combined 11 years of records monitoring rice phenology and the predicted phenology of mirid bugs using spatially–explicit EAT models based on both spatially and temporally high resolutions temperature data sets, then evaluated their accuracy using actual pest damage records. Our results showed that the predicted interactions between rice and mirid bugs explained rice damage to some degree. Our approach may apply predicting changes to plant–insect interactions under climate change. As such, combining plant monitoring records and theoretical predictions of insect phenology may be effective for predicting species–species interactions when available data are limited.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3