Author:
Oluwabunmi Kayode,D’Souza Nandika Anne,Zhao Weihuan,Choi Tae-Youl,Theyson Thomas
Abstract
AbstractEcological, health and environmental concerns are driving the need for bio-resourced foams for the building industry. In this paper, we examine foams made from polylactic acid (PLA) and micro cellulose fibrils (MCF). To ensure no volatile organic compounds in the foam, supercritical CO2 (sc-CO2) physical foaming of melt mixed systems was conducted. Mechanical and thermal conductivity properties were determined and applied to a net zero energy model house. The results showed that MCF had a concentration dependent impact on the foams. First structurally, the presence of MCF led to an initial increase followed by a decrease of open porosity, higher bulk density, lower expansion ratios and cell size. Differential Scanning Calorimetry and Scanning Electron Microscopy revealed that MCF decreased the glass transition of PLA allowing for a decrease in cell wall thickness when MCF was added. The mechanical performance initially increased with MCF and then decreased. This trend was mimicked by thermal insulation which initially improved. Biodegradation tests showed that the presence of cellulose in PLA improved the compostability of the foams. A maximum comparative mineralization of 95% was obtained for the PLA foam with 3 wt.% MCF when expressed as a fractional percentage of the pure cellulose reference. Energy simulations run on a model house showed that relative to an insulation of polyurethane, the bio-resourced foams led to no more than a 12% increase in heating and cooling. The energy efficiency of the foams was best at low MCF fractions.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference152 articles.
1. Moghaddam, S. T., & Naimi-Jamal, M. R. Reinforced magnetic polyurethane rigid (PUR) foam nanocomposites and investigation of thermal, mechanical, and sound absorption properties. J. Thermoplast. Compos. Mater. 1–18 (2018).
2. Hilyard, N. C. & Cunningham, A. Low Density Cellular Plastics: Physical Basis of Behavior 369 (Chapman and Hall, London, 1994).
3. Martínez-Díez, J. A., Rodríguez-Pérez, M. A., de Saja, J. A. & Arcos y Rábago, L.O., and Almanza, O.A, ,. The thermal conductivity of a polyethylene foam block produced by a compression molding process. J Cell Plast 37, 21–42 (2001).
4. Solórzano, E., Rodriguez-Perez, M. A., Lázaro, J. A. & de Saja, J. A. Influence of solid phase conductivity and cellular structure on the heat transfer mechanisms of cellular materials: diverse case studies. Adv EngMater 11, 818–824 (2009).
5. Pinto, J., Escudero, J., Solórzano, E. & Rodriguez-Perez, M. A. A novel route to produce structural polymer foams with a controlled solid skin-porous core structure based on gas diffusion mechanisms. J. Sandwich Struct. Mater. https://doi.org/10.1177/1099636218777434 (2018).
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献