Transductive meta-learning with enhanced feature ensemble for few-shot semantic segmentation

Author:

Karimi Amin,Poullis Charalambos

Abstract

AbstractThis paper addresses few-shot semantic segmentation and proposes a novel transductive end-to-end method that overcomes three key problems affecting performance. First, we present a novel ensemble of visual features learned from pretrained classification and semantic segmentation networks with the same architecture. Our approach leverages the varying discriminative power of these networks, resulting in rich and diverse visual features that are more informative than a pretrained classification backbone that is not optimized for dense pixel-wise classification tasks used in most state-of-the-art methods. Secondly, the pretrained semantic segmentation network serves as a base class extractor, which effectively mitigates false positives that occur during inference time and are caused by base objects other than the object of interest. Thirdly, a two-step segmentation approach using transductive meta-learning is presented to address the episodes with poor similarity between the support and query images. The proposed transductive meta-learning method addresses the prediction by first learning the relationship between labeled and unlabeled data points with matching support foreground to query features (intra-class similarity) and then applying this knowledge to predict on the unlabeled query image (intra-object similarity), which simultaneously learns propagation and false positive suppression. To evaluate our method, we performed experiments on benchmark datasets, and the results demonstrate significant improvement with minimal trainable parameters of 2.98M. Specifically, using Resnet-101, we achieve state-of-the-art performance for both 1-shot and 5-shot Pascal-$$5^{i}$$ 5 i , as well as for 1-shot and 5-shot COCO-$$20^{i}$$ 20 i .

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3