Unsupervised learning-based approach for detecting 3D edges in depth maps

Author:

Aggarwal Ayush,Stolkin Rustam,Marturi Naresh

Abstract

Abstract3D edge features, which represent the boundaries between different objects or surfaces in a 3D scene, are crucial for many computer vision tasks, including object recognition, tracking, and segmentation. They also have numerous real-world applications in the field of robotics, such as vision-guided grasping and manipulation of objects. To extract these features in the noisy real-world depth data, reliable 3D edge detectors are indispensable. However, currently available 3D edge detection methods are either highly parameterized or require ground truth labelling, which makes them challenging to use for practical applications. To this extent, we present a new 3D edge detection approach using unsupervised classification. Our method learns features from depth maps at three different scales using an encoder–decoder network, from which edge-specific features are extracted. These edge features are then clustered using learning to classify each point as an edge or not. The proposed method has two key benefits. First, it eliminates the need for manual fine-tuning of data-specific hyper-parameters and automatically selects threshold values for edge classification. Second, the method does not require any labelled training data, unlike many state-of-the-art methods that require supervised training with extensive hand-labelled datasets. The proposed method is evaluated on five benchmark datasets with single and multi-object scenes, and compared with four state-of-the-art edge detection methods from the literature. Results demonstrate that the proposed method achieves competitive performance, despite not using any labelled data or relying on hand-tuning of key parameters.

Funder

Engineering and Physical Sciences Research Council

CHIST-ERA

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3