Recursive state and parameter estimation of COVID-19 circulating variants dynamics

Author:

Silva Daniel Martins,Secchi Argimiro Resende

Abstract

AbstractCOVID-19 pandemic response with non-pharmaceutical interventions is an intrinsic control problem. Governments weigh social distancing policies to avoid overload in the health system without significant economic impact. The mutability of the SARS-CoV-2 virus, vaccination coverage, and mobility restriction measures change epidemic dynamics over time. A model-based control strategy requires reliable predictions to be efficient on a long-term basis. In this paper, a SEIR-based model is proposed considering dynamic feedback estimation. State and parameter estimations are performed on state estimators using augmented states. Three methods were implemented: constrained extended Kalman filter (CEKF), CEKF and smoother (CEKF & S), and moving horizon estimator (MHE). The parameters estimation was based on vaccine efficacy studies regarding transmissibility, severity of the disease, and lethality. Social distancing was assumed as a measured disturbance calculated using Google mobility data. Data from six federative units from Brazil were used to evaluate the proposed strategy. State and parameter estimations were performed from 1 October 2020 to 1 July 2021, during which Zeta and Gamma variants emerged. Simulation results showed that lethality increased between 11 and 30% for Zeta mutations and between 44 and 107% for Gamma mutations. In addition, transmissibility increased between 10 and 37% for the Zeta variant and between 43 and 119% for the Gamma variant. Furthermore, parameter estimation indicated temporal underreporting changes in hospitalized and deceased individuals. Overall, the estimation strategy showed to be suitable for dynamic feedback as simulation results presented an efficient detection and dynamic characterization of circulating variants.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3