Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil

Author:

Lefebvre David,Williams Adrian,Meersmans Jeroen,Kirk Guy J. D.,Sohi Saran,Goglio Pietro,Smith Pete

Abstract

Abstract Sugarcane (Saccharum officinarum L.) cultivation leaves behind around 20 t ha−1 of biomass residue after harvest and processing. We investigated the potential for sequestering carbon (C) in soil with these residues by partially converting them into biochar (recalcitrant carbon-rich material). First, we modified the RothC model to allow changes in soil C arising from additions of sugarcane-derived biochar. Second, we evaluated the modified model against published field data, and found satisfactory agreement between observed and predicted soil C accumulation. Third, we used the model to explore the potential for soil C sequestration with sugarcane biochar in São Paulo State, Brazil. The results show a potential increase in soil C stocks by 2.35 ± 0.4 t C ha−1 year−1 in sugarcane fields across the State at application rates of 4.2 t biochar ha−1 year−1. Scaling to the total sugarcane area of the State, this would be 50 Mt of CO2 equivalent year−1, which is 31% of the CO2 equivalent emissions attributed to the State in 2016. Future research should (a) further validate the model with field experiments; (b) make a full life cycle assessment of the potential for greenhouse gas mitigation, including additional effects of biochar applications on greenhouse gas balances.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference75 articles.

1. FAO. FAOSTAT. Food and Agriculture Organization of the United Nations - Statistic Division https://www.fao.org/faostat/en/#data/QC (2019).

2. Hassuani, S. J., Leal, M. R. L. V. & Macedo, I. de C. Biomass Power Generation - Sugar cane bagasse and trash. (PNUD - Programa das Nações Unidas para o Desenvolvimento And CTC - Centro de Tecnologia Canavieira, 2005).

3. Romero, E. R. et al. Sugarcane potential trash estimation: variety and cane yield effect. Int. Soc. Sugar Cane Technol. 26, 9–13 (2007).

4. Cardoso, T. F. et al. A vertical integration simplified model for straw recovery as feedstock in sugarcane biorefineries. Biomass Bioenergy 81, 216–223 (2015).

5. Caldeira-Pires, A. et al. Implications of removing straw from soil for bioenergy: an LCA of ethanol production using total sugarcane biomass. J. Clean. Prod. 181, 249–259 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3