Effect of elevated levels of CO2 on powdery mildew development in five cucurbit species

Author:

Khan Mujeebur Rahman,Rizvi Tanveer Fatima

Abstract

AbstractThe environment is the key factor that influences the host-parasite relationship. Elevated CO2 levels resulting from various anthropogenic sources may directly affect the surroundings around pathogens and plants. It is hypothesized that plants may respond differently to pathogens in the environment containing an elevated concentration of CO2. To test the hypothesis an experiment was conducted to examine the effects of intermittent exposures of elevated levels of CO2viz., 400, 500 and 600 ppm (5 hr/day on alternate days) on the development of Sphaerotheca fuliginea causing powdery mildew disease on five cucurbits species using open-top chambers. The elevated levels of CO2 acted as a growth promoter and significantly enhanced the plant growth of all five cucurbit species. Inoculation with the fungus incited specific mildew symptoms on the leaves and decreased the plant growth and biomass production of the cucurbits tested except bitter gourd. The intermittent exposures with elevated levels of CO2 aggravated the disease development. As a result, severe mildew developed on all five cucurbits, including bitter gourd, which expressed tolerance to the pathogen. Fungus colonization in terms of the number of conidia/cm2 leaf surface was significantly greater on the plants exposed to 500 or 600 ppm CO2. The stomata and trichome density and stomatal pore width were increased in the leaves of CO2 exposed plants. The CO2 exposures also accelerated the photosynthesis rate, but transpiration, stomatal conductance, salicylic acid and total phenols were decreased; fungus inoculation caused the effects just reverse of CO2. Interaction between S. fuliginea and CO2 was found synergistic at 500 ppm, whereas with rest of the concentrations it was near to additive.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference38 articles.

1. Chen, J. et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 579, 1000–1034 (2017).

2. CO2-NASA GISS Data. https://data.giss.nasa.gov/modelforce/ghgases/Fig.1A.ext.txt.

3. IPCC. Intergovernmental Panel on Climate Change. Fifth Assessment Report: Summary for Policymakers. 36 (2013)

4. Khan, M. R. & Khan, M. W. Sulphur Dioxide Effects on Plants and Pathogens in Environmental Hazards, Plant and People (eds. Iqbal, M., Srivastava, P. S. & Siddiqi, T. O.) 118–136 (CBS Publishers and Distributors, New Delhi, India, 2000)

5. Dáder, B., Fereres, A., Moreno, A. & Trębicki, P. Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behavior and virus transmission ability. Sci. Rep. 6, 19120 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3