Author:
Benito Pedro J.,Gutiérrez Álvaro,Rojo-Tirado Miguel A.
Abstract
AbstractThe real protection offered by facemasks to control the transmission of respiratory viruses is still undetermined. Most of the manufacturing regulations, as well as scientific studies, have focused on studying the filtration capacity of the fabrics from which they are made, ignoring the air that escapes through the facial misalignments, and which depends on the respiratory frequencies and volumes. The objective of this work was to define a Real Bacterial Filtration Efficiency for each type of facemask, considering the bacterial filtration efficiency of the manufacturers and the air that passes through them. Nine different facemasks were tested on a mannequin with three gas analyzers (measuring inlet, outlet, and leak volumes) inside a polymethylmethacrylate box. In addition, the differential pressure was measured to determine the resistance offered by the facemasks during the inhalation and exhalation processes. Air was introduced with a manual syringe for 180 s simulating inhalations and exhalations at rest, light, moderate and vigorous activities (10, 60, 80 and 120 L/min, respectively). Statistical analysis showed that practically half of the air entering to the system is not filtered by the facemasks in all intensities (p < 0.001, ηp2 = 0.971). They also showed that the hygienic facemasks filter more than 70% of the air, and their filtration does not depend on the simulated intensity, while the rest of the facemasks show an evidently different response, influenced by the amount of air mobilized. Therefore, the Real Bacterial Filtration Efficiency can be calculated as a modulation of the Bacterial Filtration Efficiencies that depends on the type of facemask. The real filtration capacity of the facemasks has been overestimated during last years since the filtration of the fabrics is not the real filtration when the facemask is worn.
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. WHO. Advice on the Use of Masks in the Context of COVID-19: Interim Guidance, 5 June 2020. (World Health Organization, Contract No.: WHO/2019-nCoV/IPC_Masks/2020.4, 2020).
2. Richard, M. et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun. 11(1), 3496 (2020).
3. Liu, Y. et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582(7813), 557–560 (2020).
4. N.A. Coronavirus Cases 2022. https://www.worldometers.info/coronavirus/ (2022).
5. Helmy, Y. A. et al. The COVID-19 pandemic: A comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J. Clin. Med. 9(4), 1225 (2020).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献