Solution to the problem of bridge structure damage identification by a response surface method and an imperialist competitive algorithm

Author:

Ye Dan,Xu Zhe,Liu Yangqing

Abstract

AbstractTo increase the efficiency of structural damage identification (SDI) methods and timeously and accurately detect initial structural damage, this research develops an SDI method based on a response surface method (RSM) and an imperialist competitive algorithm (ICA). At first, a Latin hypercube design method is used for experimental design and selection of sample points based on RSM. Then, a high-order response surface surrogate model for the target frequency response and stiffness reduction factor is established. Finally, analysis of variance is performed to assess the overall goodness-of-fit and prediction accuracy of the established model. Then the results obtained are combined with structural dynamic response data to construct objective functions; furthermore, the optimal solution of parameter vector in the objective function is solved based on the ICA. Then damage positioning and quantification can be achieved according to location and degree of change in each parameter; finally, the RSM-ICA-based SDI method proposed is applied to damage identification of high-dimensional damaged simply-supported beam models. To verify the effectiveness of the proposed method, the damage identification results are compared with the results obtained from traditional optimization algorithms. The results indicate that: average errors in the structural stiffness parameters and natural frequency that are identified by the proposed method are 6.104% and 0.134% respectively. The RSM-ICA-based SDI method can more accurately identify the location and degree of damages with more significantly increased identification efficiency and better precision compared to traditional algorithms. This approach provides a novel means of solving SDI problems.

Funder

Scientific and Technological Research Program of Chongqing Municipal Education Commission

Humanities and Social Sciences project of Chongqing Municipal Education Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3