Three-dimensional electrochemical-magnetic-thermal coupling model for lithium-ion batteries and its application in battery health monitoring and fault diagnosis

Author:

Bai Xuanyao,Peng Donghong,Chen Yanxia,Ma Chaoqun,Qu Wenwen,Liu Shuangqiang,Luo Le

Abstract

AbstractStorage batteries with elevated energy density, superior safety and economic costs continues to escalate. Batteries can pose safety hazards due to internal short circuits, open circuits and other malfunctions during usage, hence real-time surveillance and error diagnosis of the battery’s operational state is imperative. In this paper, a three-dimensional model of electrochemical-magnetic field-thermal coupling is formulated with lithium-ion pouch cells as the research focus, and the spatial distribution pattern of the physical field such as magnetic field and temperature when the battery is operational is acquired. Furthermore, this manuscript also investigates the diagnostic methodology for defective batteries with internal short circuits and fissures, that is, the operational state of the battery is evaluated and diagnosed by the distribution of the magnetic field surrounding the battery. To substantiate the method’s practical viability, the present study extends its examination to the 18650-battery pack. We obtained the magnetic field images of the normal operation of the battery pack and the failure state of some batteries and analyzed the relationship between the magnetic field distribution characteristics and the performance of the battery pack, providing a new method for the health monitoring and fault diagnosis of the battery pack. This non-contact method incurs no damage to the battery, concurrently exhibiting elevated sensitivity and extremely rapid response time. Meanwhile, it provides an effective means for non-destructive research on the batteries and can be applied to areas such as battery safety screening and non-destructive testing. This research not only helps to facilitate our understanding of the battery’s operating mechanism, but also provides robust support for safe operation and optimal battery design.

Funder

Guangdong Science and Technology Project

National Key Research and Development Program

Shenzhen Science and Technology Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3