Discovery of antimicrobials by massively parallelized growth assays (Mex)

Author:

Koch Philipp,Schmitt Steven,Cardner Mathias,Beerenwinkel Niko,Panke Sven,Held Martin

Abstract

AbstractThe number of newly approved antimicrobial compounds has been steadily decreasing over the past 50 years emphasizing the need for novel antimicrobial substances. Here we present Mex, a method for the high-throughput discovery of novel antimicrobials, that relies on E. coli self-screening to determine the bioactivity of more than ten thousand naturally occurring peptides. Analysis of thousands of E. coli growth curves using next-generation sequencing enables the identification of more than 1000 previously unknown antimicrobial peptides. Additionally, by incorporating the kinetics of growth inhibition, a first indication of the mode of action is obtained, which has implications for the ultimate usefulness of the peptides in question. The most promising peptides of the screen are chemically synthesized and their activity is determined in standardized susceptibility assays. Ten out of 15 investigated peptides efficiently eradicate bacteria at a minimal inhibitory concentration in the lower µm or upper nm range. This work represents a step-change in the high-throughput discovery of functionally diverse antimicrobials.

Funder

EU FP7 project ‘SYNPEPTIDE’

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3