Author:
Mann Madison M.,Berger Bryan W.
Abstract
AbstractDetermination of per- and polyfluoroalkyl substances (PFAS) in drinking water at the low levels set by regulatory officials has been a major focus for sensor developing researchers. However, it is becoming more apparent that detection of these contaminants in soils, foods and consumer products is relevant and necessary at part per billion and even part per million levels. Here, a fluorescent biosensor for the rapid detection of PFOA was engineered based on human liver fatty acid binding protein (hLFABP). By conjugating circularly permuted green fluorescent protein (cp.GFP) to a split hLFABP construct, the biosensor was able to detect perfluorooctanoic acid PFOA in PBS as well as environmental water samples with LODs of 236 and 330 ppb respectively. Furthermore, E. coli cells cytosolically expressing the protein-based sensor were demonstrated to quickly detect PFOA, demonstrating feasibility of whole-cell sensing. Overall, this work demonstrates a platform technology utilizing a circularly permuted GFP and split hLFABP conjugate as a label-free optical biosensor for PFOA.
Funder
Jefferson Trust
National Institute of General Medical Sciences
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献