Author:
Cruz Rena L. J.,Ross Maureen T.,Skewes Jacob,Allenby Mark C.,Powell Sean K.,Woodruff Maria A.
Abstract
AbstractCraniofacial prostheses are commonly used to restore aesthetics for those suffering from malformed, damaged, or missing tissue. Traditional fabrication is costly, uncomfortable for the patient, and laborious; involving several hours of hand-crafting by a prosthetist, with the results highly dependent on their skill level. In this paper, we present an advanced manufacturing framework employing three-dimensional scanning, computer-aided design, and computer-aided manufacturing to efficiently fabricate patient-specific ear prostheses. Three-dimensional scans were taken of ears of six participants using a structured light scanner. These were processed using software to model the prostheses and 3-part negative moulds, which were fabricated on a low-cost desktop 3D printer, and cast with silicone to produce ear prostheses. The average cost was approximately $3 for consumables and $116 for 2 h of labour. An injection method with smoothed 3D printed ABS moulds was also developed at a cost of approximately $155 for consumables and labour. This contrasts with traditional hand-crafted prostheses which range from $2,000 to $7,000 and take around 14 to 15 h of labour. This advanced manufacturing framework provides potential for non-invasive, low cost, and high-accuracy alternative to current techniques, is easily translatable to other prostheses, and has potential for further cost reduction.
Funder
Australian Government Research Training Program
Queensland Government Advance Queensland
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献