Experimental and simulation study on heat transfer characteristics of aluminium alloy piston under transition conditions

Author:

Liu Yang,Lei Jilin,Wang Dongfang,Deng Xiwen,Wen Jun,Wen Zhigao

Abstract

AbstractIn order to explore the thermal load change of the diesel engine piston under transitional conditions, and the influence of the position of cooling gallery on the heat transfer characteristics of the piston. An off-road high-pressure common-rail diesel engine is chosen as the research object. The sequence coupling method is used to establish the fluid–solid coupling heat transfer simulation model of the piston-gallery under the transition conditions of cold start, urgent acceleration and rapid deceleration. The Pareto optimization algorithm is introduced to optimize the position of the cooling gallery to reduce the maximum temperature and maximum thermal stress of the piston. The results show that the maximum temperature of the piston can be reduced by reducing the distance between the cooling gallery and the throat area under the maximum torque condition, and that the maximum thermal stress of the piston can be reduced by reducing the distance between the cooling gallery and the throat area or by increasing the distance between the cooling gallery and the ring area. Compared with the original design, the maximum temperature of Design A decreases by 1.28 °C while the maximum thermal stress decreases by 2.07 MPa. The maximum temperature and maximum thermal stress of Design B decreases by 0.22 °C and 0.5 MPa, respectively. The maximum thermal stress of Design C decreases by 2.67 MPa when the maximum temperature increases by 1.15 °C. The maximum change in temperature of the three typical designs and the original design of the piston throat under cold start, urgent acceleration and rapid deceleration conditions reached 207.29 °C, 136.78 °C and 9.89 °C, and the maximum change of thermal stress reached 8.62 MPa, 20.43 MPa, 4.08 MPa, respectively. The maximum change in temperature of the piston first ring groove under cold start, urgent acceleration and rapid deceleration conditions reached 172.00 °C, 83.52 °C and 7.36 °C, and the maximum change in thermal stress reached 22.96 MPa, 43.10 MPa, 5.72 MPa, respectively. The conclusions obtained can provide boundary conditions for further study of the thermal load change law of the same type of pistons, and also provide a theoretical basis for diesel engine piston structure optimization and the performance improvement.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3