Effect of intake manifold geometry on cylinder-to-cylinder variation and tumble enhancement in gasoline direct injection engine

Author:

Shin Jisoo,Kim Donghwan,Son Yousang,Park Sungwook

Abstract

AbstractIn this study, the effect of intake manifold geometry on cylinder-to-cylinder variation was investigated considering the volumetric efficiency, early tumble development, turbulent kinetic energy, and spark plug gap velocity using computational fluid dynamic program, CONVERGE v2.4. The simulation model was validated based on the PIV experiment in the cylinder and Mie-scattering experiment of intake manifold, and its results agreed well with the experiment results. The curved intake manifold and straight manifold were compared. As a result, it was advantageous for cylinder-to-cylinder variation in the straight intake manifold compared to the curved intake manifold in perspective of volumetric efficiency which were a maximum deviation of 1.7% in curved manifold and 0.6% in straight manifold. And the straight manifold had an effect of the strengthening the in-cylinder flow, so that the turbulent kinetic energy near TDC was increased to maximum 11% than curved manifold. And considering the effect of manifold curve radius on in-cylinder flow intensity in straight manifold, with increasing engine speed, the in-cylinder flow intensified during compression with decreasing the intake manifold radius due to the short distance between manifold inlet and port. Especially at 2000 rpm, the tumble ratio increased 55% at intake manifold radius of 10 cm than of 7 cm at bTDC 280 deg. Therefore, for the purpose of enhancing the in-cylinder flow near spark plug timing, shortened distance between intake manifold inlet and port and increasing the manifold radius is required.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3